Bremen

Massively Parallel Algorithms

Parallel Prefix Sum
And Its Applications

(3[1]af1

5]9]2]6 |

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

eeeeee

= Remember the reduction operation

= Extremely important/frequent operation — Google's MapReduce

= Definition prefix sum:
Given an input sequence
A= (ag a1,a,..-.,an-1),
the (inclusive) prefix sum of this sequence is the output sequence
A=(ag, a1 Dag,aa®ar@ag, ..., a0 10 - D ap)
where @ is an arbitrary binary associative operator.

The exclusive prefix sum is

N

A =(t,80,a1Da0,..., 82D - D ap)
where (is the identity/zero element, e.qg., O for the + operator.

= The prefix sum operation is sometimes also called a scan (operation)

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum

. co =
VR

eeeeee

= Example:
= Input: A=(31704163)
= Inclusive prefix sum: A = (3411 11 15 16 22 25)
= Exclusive prefix sum: A’ = (0 3 4 11 11 15 16 22)
= Further variant: backward scan
= Applications: many!
= For example: polynomial evaluation (Horner's scheme)
= In general: "What came before/after me?"

= "Where do | start writing my data?"

= The prefix sum problem appears to be "inherently sequential”

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum

. (v
\Y) g oo
VR =

= Actually, prefix-sum (a.k.a. scan) was considered such an
important operation, that it was implemented as a primitive in
the CM-2 Connection Machine (of Thinking Machines Corp.)

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 4

eeeeee

o
) Variation: Segmented Scan

= |Input: segments of numbers in one large vector

3 1 “ 7 0 4 1 6 3 [<— Payload data

Segmentation arra
10“100100<—9.y
(head-tail flags)

Task: scan (prefix-sum) within each segment

Output: prefix-sums for each segment, in one vector

= Forms the basis for a wide variety of algorithms:
= E.g., Quicksort, Sparse Matrix-Vector Multiply, Convex Hull

= Won't go into details here

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum 5

S

eeeeee

U Application from "Everyday" Life

= Given:
= A 100-inch sandwich
= 10 persons

= We know how many inches each
person wants: [35272843081]

= Task: cut the sandwich quickly

= Sequential method: one cut after another
(3 inches first, 5 inches next, ...)

= Parallel method:

= Compute prefix sum

= Cutin parallel

= How quickly can we compute the prefix sum??

G. Zachmann Massively Parallel Algorithms SS »June 2014

Prefix-Sum

Bremen

U

Importance of the Scan Operation

= Assume the scan operation is a primitive that has unit time costs,
then the following algorithms have the following complexities:

G. Zachmann

| | Model |
| Algorithm | EREW | CRCW | Scan |
Graph Algorithms
(n vertices, m edges, m processors)
Minimum Spanning Tree lg2 n Ign Ign
Connected Components 1g%n Ign Ign
Maximum Flow n*lgn n*lgn n?
Maximal Independent Set 1g2n 1g2n Ign
Biconnected Components 1g%n lgn Ign
Sorting and Merging
(n keys, n processors)
Sorting Ign Ign Ign
Merging Ign Iglgn Iglgn
Computational Geometry
(n points, n processors)
Convex Hull 1g2n lgn Ign
Building a K-D Tree 1g2n 1g2n Ign
Closest Pair in the Plane 1g2n lgnlglgn Ign
Line of Sight Ign lgn 1
Matrix Manipulation
(n X n matrix, n? processors)
Matrix x Matrix n n n
Vector x Matrix Ign lgn 1
Matrix Inversion nlgn nlgn n
Massively Parallel Algorithms SS ' June 2014

EREW =

exclusive-read,
exclusive-write PRAM
CRCW =
concurrent-read,
concurrent-write PRAM
Scan =

EREW with scan as
unit-cost primitive

Guy E. Blelloch:
Vector Models for
Data-Parallel Computing

Prefix-Sum

¥ co
VR =

Y

Example: Line-of-Sight

..

= Given:
= Terrain as grid of height values (height map)
= Point X in the grid (our "viewpoint", has a height, too)

= Horizontal viewing direction (we can look up and down, but not to the left
or right)

= Problem: find all visible points in the grid along the view direction

= Assumption: we have already extracted a vector of heights from the

grid containing all cells' heights that are in our horizontal viewing
direction

Jessnasssansannsnnan:

xxxxxxxxxxxxxxxxxxxx

Jessasasnasnanasnnnnnn:
rrrrr

G. Zachmann Massively Parallel Algorithms SS »June 2014 Prefix-Sum 8

. CG X

VR

= The algorithm: 600 J—

1. Convert height vector to vertical angles (as _—
100 —

NN
seen from X) A Altitude vector

- One thread per vector element

Angle vector (A)

2. Perform max-scan on angle vector (i.e., prefix
sum with the max operator) — A

3. Test G; < a;, if true then grid point is visible -)
Max-scan of angle vector (A)

form X

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 9

eeeeee

W The Hillis-Steele Algorithm

" I'ter?t§ Al3l 171041]6]3
og(n 4
o, d =0, stride 1 \M@Wkﬁg\)@
Imes: VR I R 2 T 2.
B: 3 4 8 / 4 5 / 9
N % M4
=1, stride 2 l\gmm@ﬂ@
¥ VA v ¥ VA
A: 3 4 11 11 12112 | 11 14
S— Y ¥ Y M
d =2, stride 4

strige J ¢ ¢ * ¢
B: 3 4 11T 111 | 15| 16 | 22 | 25

= Notes:

= Blue = active threads

= Each thread reads from "another" thread, too — must use double
buffering and barrier synchronization

G. Zachmann Massively Parallel Algorithms SS ' June 2014

Prefix-Sum

10

eeeee

= The algorithm as pseudo-code:

forall i in parallel do // n threads
for d = 0...1log(n)-1:
if i >= 27d :
x[i] = x[1 - 2°d] + x[i]

= Note: we omitted the double-buffering and the barrier synchronization

G. Zachmann Massively Parallel Algorithms SS »June 2014 Prefix-Sum 11

eeeeee

U Terminology

= Algorithmic technique: recursive/iterative doubling technique =
"Accesses or actions are governed by increasing powers of 2"

= Remember the algo for maintaining dynamic arrays? (2"9/1st semester)

= Definitions:
= Depth D(n) = "#iterations" = parallel running time T,(n)
- (Think of the loops unrolled and "baked" into a hardware pipeline)
- Sometimes also called step complexity
= Work W(n) = total number of operations performed by all threads together
- With sequential algorithms, work complexity = time complexity

= Work-efficient:

A parallel algorithm is called work-efficient, if it performs no more work than
the sequential one

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 13

R

eeeeee

= Visual definition of depth/work complexity:

= Express computation as a dependence graph of parallel tasks:

\
—

Parallel, independent tasks

= Work complexity = total amount of work performed by all tasks

= Depth complexity = length of the "critical path" in the graph

= Parallel algorithms should be always both work and depth efficient!

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 14

eeeeee

= Complexity of the Hillis-Steele algorithm:
= Depth d = Tp(n) = # iterations = log(n) — good
= Initeration d: n — 2971 adds
= Total number of adds = work complexity
log, n log, n log, n
W(n) = Z(n — 297 = Z n— Z 2971 = n-logn—n € O(nlogn)
d=1 d=1 d=1

" Conclusion: not work-efficient

= A factor of log(n) can hurt: 20x for 100 elements

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 15

eeeeee

W The Blelloch Algorithm (for Exclusive Scan) g

= Consists of two phases: up-sweep (= reduction) and down-sweep

1. Up-sweep:

3 1 / 0] 4 1 6 3

Y Y Y Y

d =0, stride 1 \\>@ \@ \@ \@
7 v v v

3 4 7/ / 4 5 6 9

Y

d=1, stride 2 \G\E \9%
3 4 7 | 11 4 5 6 | 14

\ é

d =2, stride 4 —> i

3 4 /7 11| 4 5 6 | 25

= Note: no double-buffering needed! (sync is still needed, of course)

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 16

eeeeee

2. Down-sweep:

= First: zero last element (might seem strange at first thought)

3 4 7 | 11 4 5 6 0
d=0, ~— %’EWD
stride4 === "===7

e ¥
3 4 0 4 5 6 | 11
d-1 =~ 8
stride 2 V’ ‘l‘ V’ ‘l‘
3 0 / 4 4 11 6 | 16
_ A 2 N X X
g &)’@ \>->‘69 &*@ &e‘@
VAR A / VAR VAR

0 3 4 11T |11 | 15| 16 | 22

= Dashed line means "store into" (overwriting previous content)

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum

eeeeee

= Depth complexity:
= Performs 2-log(n) iterations
= D(n) € O(logn)
= Work-efficiency:
= Numberofadds: n/2+n/4+..+1+1+...4+n/4+n/2
= Work complexity W(n) = 2:n = O(n)
= The Blelloch algorithm is work efficient

= This up-sweep followed by down-sweep is a very common pattern
in massively parallel algorithms!

= Limitations so far:
= Only one block of threads (what if the array is larger?)

= Only arrays with power-of-2 size

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum

18

eeeeee

Y Working on Arbitrary Length Input

= One kernel launch handles up to 2*blockDim.x elements
= Partition array into blocks
= Choose fairly small block size = 2k so we can easily pad array to b-2k

1. Run up-sweep on each block

2. Each block writes the sum of its section (= last element after up-
sweep) into a Sums array at blockldx.x

3. Run prefix sum on the Sums array
4. Perform down-sweep on each block

5. Add Sums[blockldx.x] to each element in "next" array section
blockldx.x+1

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum

19

eeeee

0 co
VR

208

Up-sweep block O Up-sweep block 1

Up-sweep block 2

Up-sweep block 3

€

"-————————————————————_. ..————————————————I

Store block sums to auxiliary array Sums

Scan auxiliary array Sums
"Seed" last value in block i+1
with Sumsli], instead of O

Down-sweep block 3

Down-sweep block O Down-sweep block 1

Down-sweep block 2

|
)
1
)
)
'
v

P P —

Final

G. Zachmann Massively Parallel Algorithms SS »June 2014 Prefix-Sum 20

eeeeee

Y Further Optimizations

= A real implementation needs to do all the nitty-gritty optimizations
= E.g., worry about bank conflicts (very technical, pretty complex)
= A simple & effective technique:
= Each thread i loads 4 floats from global memory — float4 x
= Store 2.4 x[1][3] in shared memory a[i]
= Compute the prefix-sumona — a

= Store 4 values back in global memory:
-a[i] + x[0]
-a[i] + x[0] + x[1]
-a[i] + x[0] + x[1] + x[2]
-a[i] + x[0] + x[1] + x[2] + x[3]
= Experience shows: 2x faster

= Why does this improve performance? — Brent's theorem

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 21

eeeeee

Brent's Theorem

= Assumption when formulating parallel algorithms: we have
arbitrarily many processors

= E.g., O(n) many processors for input of size n

= Kernel launch even reflects that!
- Often, we run as many threads as there are input elements

- l.e., CUDA/GPU provide us with this (nice) abstraction
= Real hardware: only has fixed number p of processors
= E.g., on current GPUs: p = 200—-2000 (depending on viewpoint)

= Question: how fast can an implementation of a massively parallel
algorithm really be?

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum

S

' CG e
VR X

22

= Assumptions for Brent's theorem: PRAM model
= No explicit synchronization needed

= Memory access = free

= Brent's Theorem:
Given a massively parallel algorithm A; let D(n) = its depth (i.e.,

parallel time complexity), and W(n) = its work complexity.
Then, A can be run on a p-processor PRAM in time

W(”)J + D(n)

T(n,p) < {

(Note the "<")

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 23

eeeeee

= Proof:

= For each iteration step i, 1 < i < D(n), let Wi(n) = number of operations
in that step

= Distribute those operations on p processors:

- Groups of [@1 operations in parallel on the p processors

- Takes [Mw time steps on the PRAM

= Overall :
- B2 FH A0 2]

G. Zachmann Massively Parallel Algorithms SS » June 2014 Prefix-Sum 24

